Xenology: An Introduction to the Scientific Study of Extraterrestrial Life, Intelligence, and Civilization

First Edition

© 1975-1979, 2008 Robert A. Freitas Jr. All Rights Reserved.

Robert A. Freitas Jr., Xenology: An Introduction to the Scientific Study of Extraterrestrial Life, Intelligence, and Civilization, First Edition, Xenology Research Institute, Sacramento, CA, 1979; http://www.xenology.info/Xeno.htm


6.2.1  The Traditional Answer

The possibility of discovering an exotic lifeform such as the above has spurred biologists to carefully reconsider their assessment of the nature of life. Scores of situations can easily be conjured up in which our tried-and true common sense rules break down horribly. The need for a more rigorous definition is clear.

If so many different kinds of life are possible, though, can we hope to reach them all with a single definition? Perhaps. For instance, one comprehensive characterization of life, at once exact and unsatisfying, might be: "Life is a highly improbable state of matter."1171 The difficulty arises when we try to be a bit more specific than this.

Some of the most generalized functional definitions have been rather ingenious. One author presents an ecological specification: A rock has small influence on another rock, but an organism profoundly affects all other living things around it. Living creatures alone can form ecological systems.64 Dr. Daniel Mazia has suggested that survival is the key to understanding what life is. As he correctly points out, "the living world thwarts time by survival, all the rest combats time by endurance."313

Another writer, Dr. V.A. Firsoff, has proposed that "mind" underlies all life, but is a quality denied to the nonliving.352 Others would claim that "the exclusive property of life is consciousness"171 or "self-direction."444 Still another definition hinges on the similar concept of "free will." As the late John Campbell, former editor of Analog, once put it: "Inorganic matter displays the characteristic that what it can do, it must. Any nonliving system always does everything it can do. Living systems don’t display that characteristic; if a living organism can do something, it -- may."200

The traditional biologist points out that all living things possess certain unique properties. One way to define life rigorously is in terms of specific, enumerated traits: Growth, feeding and metabolism, motility (physical movement), responsiveness to environmental stimuli, and reproduction with adaptation.

Let’s look at each of these in turn.

During the process of growth, a living organism takes in raw materials and integrates them into itself. Molecules of various substances are added, redistributed, or removed as the body changes shape and develops new structures. Growth also allows for replacement of old worn-out parts.

Unfortunately, many non-living systems also display growth. Crystals of table salt, for instance, or hailstones can be said to grow.

"Chemical gardens," made from heavy metal salts immersed in a bath of sodium silicate solution, also exhibit growth. It is true that most of these counterexamples involve only simple accretion from the outside, and the structure remains basically unchanged. But the flame of a candle appears to grow, and in a fire there is an actual throughput of new atoms. Hence, the candle flame is a valid exception to growth as a defining characteristic of life.

How about the criteria of feeding and metabolism? We know that living organisms eat primarily for two reasons. First, food is ingested and metabolized to provide an energy exchange with the surrounding medium. This gives a lifeform the ability to carry out any other functions it may wish to perform -- reproduction, movement, thinking, more eating, etc.

Second, food must be accumulated to secure the raw materials necessary to effect repairs and to maintain growth. As has been pointed out, the kind of food consumed is really irrelevant. While humans and worms may prefer apples, some bacteria thrive on the most putrefactious sewage (and abhor oxygen), and plants "eat" carbon dioxide and sunlight.

But here again we note that the candle flame has a kind of metabolism. Fires may be said to digest their fuel and to leave wastes behind as chemical energy is converted to heat. Crystals too may eat, if we are willing to consider the saturated chemical solution in which they grow to be their food. Even machines metabolize their fuel, whether to manufacture spare parts or to build near-duplicates of themselves.

Motility is another oft-touted characteristic of life: Animals, and plants to a lesser extent, are capable of bodily movement. Yet there are many analogues in the world of the nonliving. Rocks and snow move in avalanches, cars travel highways, rivers flow, and under the proper thermal conditions metals will expand and contract. Granted, most of these are the result of the imposition of strictly external forces.444 Nevertheless, the fact that forest fires may spread under their own power constitutes an exception to the motility rule.

What about irritability? It has been said that if organisms are to profit from their association with the environment, they must be responsive to it at all times. Sensors and effectors thus become more and more highly developed as we climb the evolutionary ladder.

However, some non-motile bacteria show little evidence of reaction to stimuli,64 and plants are notorious laggard in their responses. Also, irritability is a property demonstrated by many nonliving systems. Crystals react quite sharply to changes in the solute concentration or temperature of their environment. The candle flame recoils when an open door admits a draft. A flask of nitroglycerine is highly responsive to certain environmental stimuli, particularly heat and shock.881

Reproduction is probably the most frequently cited "essential" defining characteristic of living systems.20,521 Although a few scientists would demand the presence of DNA or RNA molecules, proteins, lipids, polysaccharides and the like as requirements for life, most stick to the basics: Replication plus adaptation.

According to these so-called "genetic" definitions of life, living things are entities capable of reproducing themselves, mutating, and subsequently re-reproducing the new mutated form. Organisms are required to multiply geometrically as well. Simple arithmetic reproduction, as in a printing press, is insufficient. The copies themselves must also be able to make more copies. When mutations arise, they are faithfully duplicated -- variation is preserved in subsequent replications.

The central idea behind this attempt to define life by reproduction is that living organisms must be the subjects of natural selection, capable of adaptation and evolution. Any system that can replicate, mutate, and replicate mutations will be susceptible to normal evolutionary processes. Favored organisms with the highest potential for survival go on to multiply; others who fare more poorly in the struggle for existence eventually become extinct. Fundamental to the genetic definition of life, then, is the built-in and perhaps unwarranted assumption that a certain level of complexity cannot be achieved save by natural selection operating via adaptive replication.2358

It is entirely possible that some lifeforms may have no need to reproduce themselves. Such nonreproducers, if they exist, must be either immortal or very recent arrivals. One class of such beings would be self-creating but nonreplicating organisms, such as robots capable of making continual repairs and of upgrading their own mechanisms periodically, or such as astronomer Hoyle’s Black Cloud mentioned earlier.

There could even exist beings who evolve by means of acquired characteristics.2216 Such lifeforms could neither die nor reproduce, but would instead modify their parts in response to the changing environment. As Dr. P.H.A. Sneath of Leicester University puts it: "Evolution and selection would then operate internally on their constitution, rather than on a succession of descendent organisms."64 Dr. Sneath suggests that the closest analogy to this might be soils, which don’t reproduce in the usual sense but are complexly organized systems nevertheless. Soils respond to environmental changes, arise wherever there is rock and wind to erode it, and are virtually immortal. Organisms such as these would be unable to "compete" with their neighbors without blending together with a total loss of individuality.

There are other objections to the use of adaptive reproduction as the fundamental criterion for life. Mules, the offspring of a mare and a male donkey, are sterile and so technically are not "alive"- under the genetic definition. Most bees, ants, wasps and termites don’t reproduce either. Selection acts on the whole nest, rather than on individual units, so evolution proceeds through the queen and drones alone. Many varieties of hybrid flowering plants are similarly sterile.

The inorganic world too is rife with exceptions. Flames, driven by wind or with sparks, can reproduce and "mutate." Crystals placed in solutions doped with foreign ions are perfectly capable of reproduction, mutation, and of propagating the mutation (i.e., lattice imperfections).

We see that traditional concepts of life are unduly restrictive for our purposes. As Dr. Mazia laments: "The problem is not that our conception of a living thing is vague; on the contrary, our concern is that it is too definite because it is too provincial."313 We must seek more generalized means to identify and to define life.


Last updated on 6 December 2008